Cómo comprobar por qué cambió el rendimiento de PPC

Descubrir por qu√© cambi√≥ el rendimiento de una campa√Īa de publicidad en b√ļsquedas puede ser tremendamente dif√≠cil, pero herramientas como Optmyzr pueden ayudar.

Hay muchas piezas m√≥viles en las campa√Īas de PPC y eso puede hacer que sea dif√≠cil identificar la causa cuando cambia el rendimiento. Una investigaci√≥n sobre la causa del cambio puede ser de arriba hacia abajo o de abajo hacia arriba. Aqu√≠ cubriremos ambas formas de investigar la causa ra√≠z y tambi√©n compartiremos herramientas que hacen que este proceso sea m√°s r√°pido.

La dificultad de investigar los cambios en el rendimiento de PPC

Lo que hace que sea tan dif√≠cil saber por qu√© cambian los resultados en PPC es que todos los anuncios se ejecutan en una subasta cada vez que se realiza una b√ļsqueda y cada subasta tiene diferentes par√°metros, como d√≥nde se encuentra el buscador, qu√© hora es, qu√© m√°s ha estado. investigando y mucho m√°s. Cada vez que el anunciante realiza un cambio en la configuraci√≥n, cambia la forma en que participa en la subasta y eso puede generar diferentes resultados para los principales KPI. Algunos ejemplos:

  1. El anunciante cambia su oferta y esto provoca un cambio en el rendimiento porque su anuncio ahora se muestra para un conjunto diferente de consultas.
  2. El anunciante habilita un nuevo tipo de anuncio como RSA (anuncios de b√ļsqueda receptivos) y el rendimiento cambia cuando el sistema de aprendizaje autom√°tico de Google comienza a mostrar el anuncio a una nueva audiencia que antes no estaba expuesta al antiguo tipo de anuncio.

Investigación de arriba hacia abajo

Investigar por qu√© cambi√≥ el rendimiento generalmente comienza con una pregunta sobre un KPI principal. Por ejemplo, podr√≠a preguntar, ¬ę¬Ņpor qu√© tuvimos menos conversiones el mes pasado que el mes anterior?¬Ľ La extracci√≥n de estos datos se puede hacer directamente en la interfaz de Google Ads agregando un segundo rango de fechas a las p√°ginas de la campa√Īa. Es bastante simple cuando desea saber el tama√Īo del cambio, pero se vuelve engorroso r√°pidamente cuando los anunciantes comienzan a buscar interacciones entre m√©tricas en un esfuerzo por conectar los puntos para determinar la causa subyacente.

Una investigación manual de por qué cambió el rendimiento en una cuenta implica varios pasos en la interfaz de Google Ads

Por ejemplo, si descubre que las conversiones han aumentado, es posible que desee saber por qué sucedió esto. Como todos sabemos, hay dos impulsores directos de conversiones: los clics y si esos clics se convirtieron, es decir, si tuvieron alguna tasa de conversión. A continuación, si queremos saber por qué cambiaron los clics, tenemos que mirar las dos cosas principales que generan clics: impresiones y CTR. Esto se vuelve rápidamente difícil en la interfaz de Google Ads, donde todo está en una tabla grande que es muy ancha y no se puede leer sin desplazarse de izquierda a derecha.

Una herramienta como Investigador de PPC de Optmyzr simplifica enormemente este tipo de investigación de rendimiento de arriba hacia abajo. Su visualización refleja de cerca los pasos que un profesional de PPC normalmente seguiría manualmente.

La herramienta PPC Investigator de Optmyzr conecta los puntos para que un administrador de cuentas pueda comprender rápidamente la razón principal por la que sus KPI están cambiando. En este ejemplo, las conversiones disminuyeron principalmente debido a una caída en la tasa de conversión.

La herramienta tiene muchos filtros que permiten un an√°lisis m√°s profundo, como filtros para campa√Īas, etiquetas, rangos de fechas, redes y tipos de dispositivos. Solo se necesitan unos pocos clics para volver a ejecutar todo el an√°lisis cuando un hallazgo genera m√°s preguntas. Por ejemplo, cuando un anunciante encuentra una ca√≠da en la tasa de conversi√≥n, puede preguntarse si esto se debe a diferencias entre sus sitios m√≥viles y de escritorio.

Este an√°lisis adicional est√° a solo un clic de distancia agregando un filtro para los tipos de dispositivos. Con una visualizaci√≥n clara, el anunciante puede comprender r√°pidamente que un sitio m√≥vil mal optimizado es una de las principales razones de la disminuci√≥n del rendimiento. A medida que m√°s volumen de b√ļsqueda cambia de escritorio a dispositivo m√≥vil, su mala tasa de conversi√≥n en dispositivos m√≥viles genera menos conversiones a pesar de que el volumen general de clics es relativamente estable.

El investigador de PPC también permite desgloses rápidos en un análisis de la causa raíz donde el usuario puede tener una idea de qué elementos de una cuenta son los principales impulsores de grandes cambios en las métricas. Por ejemplo, si parece que una caída en las conversiones se debe en gran parte a una disminución en las impresiones, un solo clic en el cuadro de impresiones muestra el análisis de la causa raíz que muestra los principales cambios para las impresiones.

Con un solo clic en una métrica que ha cambiado, el usuario puede encontrar los componentes principales de la cuenta que son responsables de este cambio en particular.

Una vez que un anunciante determina las m√©tricas que necesitan una investigaci√≥n, puede profundizar en la pesta√Īa de an√°lisis de la causa ra√≠z para ver qu√© partes de la cuenta son las m√°s responsables del cambio.

La pesta√Īa de an√°lisis de causa ra√≠z de Optmyzr en PPC Investigator destaca los elementos principales de la cuenta responsables de un cambio en el rendimiento, por ejemplo, qu√© campa√Īas, grupos de anuncios, palabras clave, redes o tipos de dispositivos est√°n provocando un cambio.

Investigación de abajo hacia arriba

Otra forma de investigar por qué cambió el rendimiento de PPC es un enfoque ascendente que comienza con los elementos más granulares de una cuenta de PPC. Si bien un enfoque de arriba hacia abajo puede ocultar cambios buenos y malos siempre que los promedios generales sean estables, una investigación de abajo hacia arriba revelará estos cambios más granulares.

Una investigación de abajo hacia arriba en profundidad generalmente requiere procesar una gran cantidad de datos a través de una hoja de cálculo, una tarea que requiere mucho tiempo y con la que los profesionales de PPC están muy familiarizados.

El proceso de encontrar cosas que cambiaron generalmente implica estos pasos:

  1. Descargar datos para el intervalo de fechas en el que cambiaron los resultados
  2. Descargar datos para las mismas entidades de un intervalo de fechas anterior en el que las cosas se consideraban ¬ęnormales¬Ľ
  3. Combine los dos conjuntos de datos haciendo un vlookup
  4. Agregue algunas fórmulas para calcular la cantidad de cambio y agréguelas en columnas adicionales a la hoja de cálculo
  5. Agregue filtros y clasificación para traer los cambios más importantes a la parte superior

Si bien este proceso funciona muy bien en hojas de c√°lculo, herramientas como Motor de reglas de Optmyzr puede hacerlo m√°s r√°pido y m√°s repetible, dos consideraciones importantes para las agencias con poco tiempo y los equipos internos de PPC.

El motor de reglas toma autom√°ticamente los datos necesarios del motor de anuncios y ofrece una interfaz de usuario gr√°fica simple para construir declaraciones if-then con √©l. El siguiente ejemplo muestra una regla en la que Optmyzr toma autom√°ticamente datos para dos rangos de fechas, realiza una combinaci√≥n autom√°tica de los m√ļltiples rangos de fechas y luego los presenta en un informe f√°cil de leer.

El motor de reglas Optmyzr permite a los anunciantes crear declaraciones If-Then avanzadas para automatizar optimizaciones complejas y an√°lisis de cuentas PPC.

Reglas de ejemplo para investigar el rendimiento de PPC

Optmyzr ha creado ‘recetas’ predefinidas en su motor de reglas para que los profesionales de PPC puedan ejecutar investigaciones y optimizaciones comunes con un solo clic y, al mismo tiempo, permitir el acceso a la metodolog√≠a subyacente a aquellos que desean personalizar la l√≥gica.

Caída de impresiones debido a consultas perdidas

La forma principal de orientar anuncios en PPC es a través de palabras clave. Pero esas palabras clave son en realidad solo un medio para orientar las consultas que realizan los usuarios. Un simple cambio, como una nueva oferta para una palabra clave, puede afectar las consultas para las que se muestra esa palabra clave. Y cuando los resultados se ven diferentes, es difícil saber si la oferta o la nueva combinación de consultas es la causa principal. Para investigar esto, los anunciantes pueden usar el motor de reglas para comparar consultas en dos períodos. Pueden ser de especial interés las consultas que pasaron de un volumen bajo a un volumen alto y viceversa.

Una ‘receta’ de motor de reglas predise√Īada ayuda a los anunciantes a encontrar consultas que sol√≠an funcionar bien pero que ya no lo hacen. Al escribir la l√≥gica en una regla, los anunciantes pueden ejecutar el mismo an√°lisis autom√°ticamente de forma regular y aplicar la misma metodolog√≠a en muchas cuentas.

Disminución lenta del rendimiento

Otra buena investigaci√≥n es encontrar entidades en una cuenta de PPC que tengan una tendencia lenta pero constante en sentido contrario. En una investigaci√≥n semana tras semana o mes tras mes, la mayor parte de la atenci√≥n se suele dedicar a cosas con grandes cambios. Pero eso permite que los componentes de la cuenta que se degradan lentamente pasen por alto la atenci√≥n del gerente y, finalmente, estos peque√Īos cambios realmente pueden acumularse.

Google escribió un script de muestra para esto, el Informe de rechazo de grupos de anuncios. Y aunque las secuencias de comandos son excelentes, Optmyzr incluso tiene muchas que puede copiar y pegar en su cuenta, todavía hay muchos anunciantes que prefieren no trabajar con secuencias de comandos. Rule Engine es una gran solución que brinda a los anunciantes el poder de los scripts en una interfaz más familiar para especificar su lógica.

En lugar de tener que escribir la l√≥gica de la investigaci√≥n en c√≥digo JavaScript, ahora es posible crear la l√≥gica en un generador de reglas gr√°fico. Tomando el script de ejemplo de Google, ¬Ņqu√© pasa si el anunciante desea encontrar palabras clave en declive o grupos de productos de compras? ¬ŅQu√© pasar√≠a si quisieran establecer un umbral para cuando una disminuci√≥n sea lo suficientemente significativa como para preocuparse? Hacer estas mejoras en la metodolog√≠a es f√°cil con Rule Engine de Optmyzr.

Optmyzr Rule Engine proporciona una forma más sencilla de crear un informe de rendimiento en declive que utilizar una secuencia de comandos de Google Ads. La lógica que se muestra aquí busca 4 semanas consecutivas de CTR decreciente donde las impresiones fueron lo suficientemente significativas como para que el CTR sea significativo.

Cerrar variantes

Una investigaci√≥n de abajo hacia arriba no siempre necesita comenzar con una pregunta sobre el desempe√Īo. Tambi√©n puede analizar si la segmentaci√≥n de anuncios se mantiene lo suficientemente enfocada. En este ejemplo, se puede crear una regla para marcar casos de variantes cercanas de coincidencia exacta que deben investigarse. En septiembre de 2018, Google ampli√≥ las variantes cercanas al permitir que las palabras clave de concordancia exacta muestren anuncios cuando la consulta se considera del ‘mismo significado’ que la palabra clave exacta.

Esta receta de motor de reglas busca consultas que cierran variantes de palabras clave de concordancia exacta en una cuenta de Google Ads. Se puede ampliar para agregar palabras clave negativas cuando sea necesario.

Si bien esto es solo un informe, la belleza de un motor de reglas es que es fácil tomar los hallazgos y actuar sobre ellos. Por ejemplo, esta regla podría mejorarse y usar atributos de rendimiento para decidir cuándo agregar una palabra clave negativa para una variante cercana no deseada.

Conclusión

Explicar por qué cambia el rendimiento en una cuenta puede consumir mucho tiempo para los equipos de PPC. Ya sea que prefiera una investigación de arriba hacia abajo o de abajo hacia arriba para encontrar la causa raíz, existen herramientas como Optmyzr que pueden agilizar el proceso y hacerlo repetible de manera más consistente para que los gerentes de PPC puedan brindar el alto nivel de servicio esperado por las empresas cuyo marketing apoyan.

Deja un comentario